Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0376223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38465979

RESUMEN

The emergence and re-emergence of abundant viruses from bats that impact human and animal health have resulted in a resurgence of interest in bat immunology. Characterizing the immune receptor repertoire is critical to understanding how bats coexist with viruses in the absence of disease and developing new therapeutics to target viruses in humans and susceptible livestock. In this study, IGH germline genes of Chiroptera including Rhinolophus ferrumequinum, Phyllostomus discolor, and Pipistrellus pipistrellus were annotated, and we profiled the characteristics of Rhinolophus affinis (RA) IGH CDR3 repertoire. The germline genes of Chiroptera are quite different from those of human, mouse, cow, and dog in evolution, but the three bat species have high homology. The CDR3 repertoire of RA is unique in many aspects including CDR3 subclass, V/J genes access and pairing, CDR3 clones, and somatic high-frequency mutation compared with that of human and mouse, which is an important point in understanding the asymptomatic nature of viral infection in bats. This study unveiled a detailed map of bat IGH germline genes on chromosome level and provided the first immune receptor repertoire of bat, which will stimulate new avenues of research that are directly relevant to human health and disease.IMPORTANCEThe intricate relationship between bats and viruses has been a subject of study since the mid-20th century, with more than 100 viruses identified, including those affecting humans. While preliminary investigations have outlined the innate immune responses of bats, the role of adaptive immunity remains unclear. This study presents a pioneering contribution to bat immunology by unveiling, for the first time, a detailed map of bat IGH germline genes at the chromosome level. This breakthrough not only provides a foundation for B cell receptor research in bats but also contributes to primer design and sequencing of the CDR3 repertoire. Additionally, we offer the first comprehensive immune receptor repertoire of bats, serving as a crucial library for future comparative analyses. In summary, this research significantly advances the understanding of bats' immune responses, providing essential resources for further investigations into viral tolerance and potential zoonotic threats.


Asunto(s)
Quirópteros , Virosis , Virus , Animales , Humanos , Perros , Ratones , Virosis/veterinaria , Inmunidad Adaptativa , Células Germinativas , Filogenia
2.
J Med Virol ; 96(3): e29488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38415507

RESUMEN

The global COVID-19 pandemic has caused more than 1 billion infections, and numerous SARS-CoV-2 vaccines developed rapidly have been administered over 10 billion doses. The world is continuously concerned about the cytokine storms induced by the interaction between SARS-CoV-2 and host, long COVID, breakthrough infections postvaccination, and the impact of SARS-CoV-2 variants. BCR-CDR3 repertoire serves as a molecular target for monitoring the antiviral response "trace" of B cells, evaluating the effects, mechanisms, and memory abilities of individual responses to B cells, and has been successfully applied in analyzing the infection mechanisms, vaccine improvement, and neutralizing antibodies preparation of influenza virus, HIV, MERS, and Ebola virus. Based on research on BCR-CDR3 repertoire of COVID-19 patients and volunteers who received different SARS-CoV-2 vaccines in multiple laboratories worldwide, we focus on analyzing the characteristics and changes of BCR-CDR3 repertoire, such as diversity, clonality, V&J genes usage and pairing, SHM, CSR, shared CDR3 clones, as well as the summary on BCR sequences targeting virus-specific epitopes in the preparation and application research of SARS-CoV-2 potential therapeutic monoclonal antibodies. This review provides comparative data and new research schemes for studying the possible mechanisms of differences in B cell response between SARS-CoV-2 infection or vaccination, and supplies a foundation for improving vaccines after SARS-CoV-2 mutations and potential antibody therapy for infected individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas contra la COVID-19 , Síndrome Post Agudo de COVID-19 , Pandemias , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Artículo en Inglés | MEDLINE | ID: mdl-38083658

RESUMEN

Drowsy driving has a crucial influence on driving safety, creating an urgent demand for driver drowsiness detection. Electroencephalogram (EEG) signal can accurately reflect the mental fatigue state and thus has been widely studied in drowsiness monitoring. However, the raw EEG data is inherently noisy and redundant, which is neglected by existing works that just use single-channel EEG data or full-head channel EEG data for model training, resulting in limited performance of driver drowsiness detection. In this paper, we are the first to propose an Interpretability-guided Channel Selection (ICS) framework for the driver drowsiness detection task. Specifically, we design a two-stage training strategy to progressively select the key contributing channels with the guidance of interpretability. We first train a teacher network in the first stage using full-head channel EEG data. Then we apply the class activation mapping (CAM) to the trained teacher model to highlight the high-contributing EEG channels and further propose a channel voting scheme to select the top N contributing EEG channels. Finally, we train a student network with the selected channels of EEG data in the second stage for driver drowsiness detection. Experiments are designed on a public dataset, and the results demonstrate that our method is highly applicable and can significantly improve the performance of cross-subject driver drowsiness detection.


Asunto(s)
Conducción de Automóvil , Humanos , Vigilia/fisiología , Electroencefalografía/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37983144

RESUMEN

Equipping drones with target search capabilities is highly desirable for applications in disaster rescue and smart warehouse delivery systems. Multiple intelligent drones that can collaborate with each other and maneuver among obstacles show more effectiveness in accomplishing tasks in a shorter amount of time. However, carrying out collaborative target search (CTS) without prior target information is extremely challenging, especially with a visual drone swarm. In this work, we propose a novel data-efficient deep reinforcement learning (DRL) approach called adaptive curriculum embedded multistage learning (ACEMSL) to address these challenges, mainly 3-D sparse reward space exploration with limited visual perception and collaborative behavior requirements. Specifically, we decompose the CTS task into several subtasks including individual obstacle avoidance, target search, and inter-agent collaboration, and progressively train the agents with multistage learning. Meanwhile, an adaptive embedded curriculum (AEC) is designed, where the task difficulty level (TDL) can be adaptively adjusted based on the success rate (SR) achieved in training. ACEMSL allows data-efficient training and individual-team reward allocation for the visual drone swarm. Furthermore, we deploy the trained model over a real visual drone swarm and perform CTS operations without fine-tuning. Extensive simulations and real-world flight tests validate the effectiveness and generalizability of ACEMSL. The project is available at https://github.com/NTU-UAVG/CTS-visual-drone-swarm.git.

5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 474-478, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37248842

RESUMEN

The humoral immune response of B cells is the key to the protection of specific immunity, and immune aging reshapes its production and function. The decreased B cell immune function is an indicator of immune senescence. The impaired humoral immune function mediated by antibody secreted by B cells leads to a decline in the response of elderly individuals to the vaccine. These people are therefore more susceptible to infection and deterioration, and have a higher incidence of tumors and metabolic diseases. Activation-induced cytidine deaminase (AID) is an enzyme that triggers immunoglobulin class conversion recombination (CSR) and somatic high frequency mutation (SHM). It decreases during immune senescence and is considered to be a biomarker of decreased B cell function in aging mice and humans. Understanding the inherent defects of B-cell immune senescence and the regulation mechanism of AID in the aging process can provide new research ideas for the susceptibility, prevention and treatment of diseases in the elderly.


Asunto(s)
Citidina Desaminasa , Hipermutación Somática de Inmunoglobulina , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Linfocitos B/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...